Mesure de LCI (lung clearance index) dans la mucoviscidose

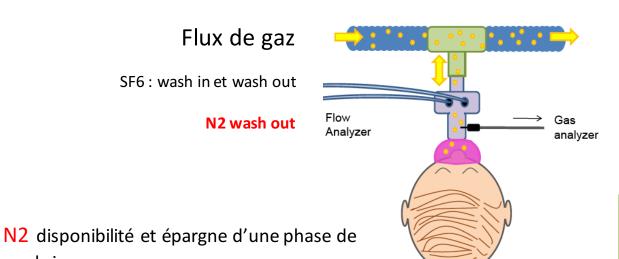
Muriel Le Bourgeois

Mise en évidence précoce de l'atteinte respiratoire dans la mucoviscidose

- « EFR classiques » peu sensibles
 - Les voies aériennes (VA) périphériques : « zone silencieuse» en spirométrie.
 - Les petites VA contribuent peu aux résistances globales (≈10% des résistances totales des VA)
- Imagerie
 - TDM irradiante malgré de nets progrès
 - IRM amélioration de la technique
 - Cependant actuellement moins performante que la TDM pour une analyse fine du parenchyme
 - Nécessite une sédation pour les plus jeunes

Lung Clearance Index : principe de mesure

Volume que le sujet doit respirer pour éliminer un gaz marqueur inerte, normalisé sur le volume pulmonaire (afin d'avoir des comparaisons possibles)


Le LCI est le nombre de turnovers (TO) de Capacité Résiduelle Fonctionnelle (Volume expiré cumulé (CEV)/CRF) nécessaire pour diminuer la concentration alvéolaire d'un gaz traceur à une fraction donnée de sa cc initiale (1/40ème, 2,5%).

Plus la ventilation est inhomogène, plus le patient effectue un grand nombre de TO pour éliminer le gaz inerte et plus la valeur de LCI est élevée.

LCI

La mesure de LCI est une mesure sensible de l'atteinte des petites voies aériennes

» Verbanck J Appl Physiol 2012

Disconnection during expiration

Time

SF6, He gold standard, onéreux+

wash-in.

SF6 non autorisé en France, USA

Analyseur photoacoustique SF6 (CH4)

Détecteur par US (masse molaire)
SF6, He, N2

Spectromètre de masse

Analyseur N2

(spectrophotomètre)

Méthode indirecte de mesure de N2 (via analyseurs d' O2 et CO2)

ERS/ATS CONSENSUS STATEMENT

Consensus statement for inert gas washout measurement using multiple- and single-breath tests

Paul D. Robinson, Philipp Latzin, Sylvia Verbanck, Graham L. Hall, Alexander Horsley, Monika Gappa, Cindy Thamrin, Hubertus G.M. Arets, Paul Aurora, Susanne I. Fuchs, Gregory G. King, Sooky Lum, Kenneth Macleod, Manuel Paiva, Jane J. Pillow, Sarah Ranganathan, Felix Ratjen, Florian Singer, Samatha Sonnappa, Janet Stocks, Padmaja Subbarao, Bruce R. Thompson and Per M. Gustafsson

ABSTRACT: Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed.

Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

KEYWORDS: Adult, lung function, monitoring, paediatric, validation

AFFILIATIONS

For a full list of author affiliations, please refer to the Acknowledgements.

CORRESPONDENCE

P.D. Robinson

Dept of Respiratory Medicine

The Children's Hospital at Westmead

Locked Bag 4001

Westmead

Sydney

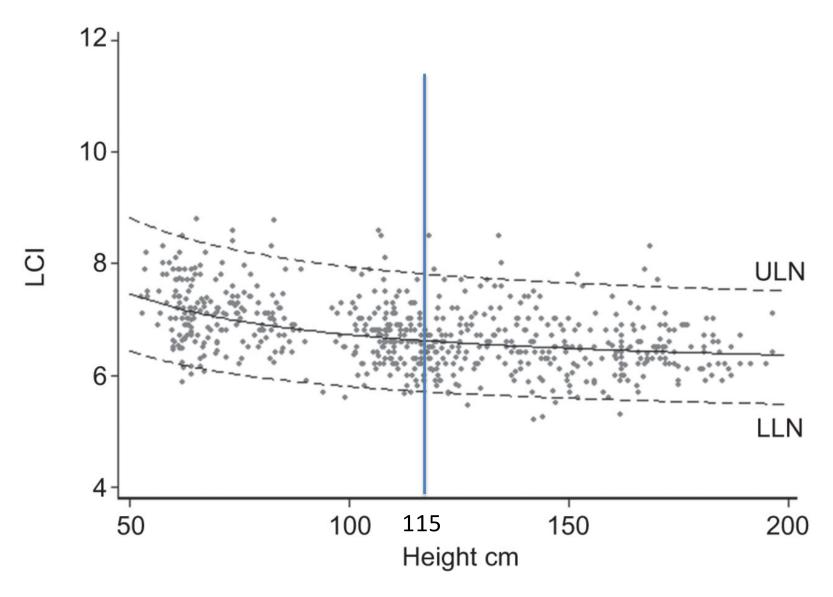
NSW 2145

Australia

E-mail: dr.pdrobinson@gmail.com

Received:

May 02 2012


Accepted after revision:

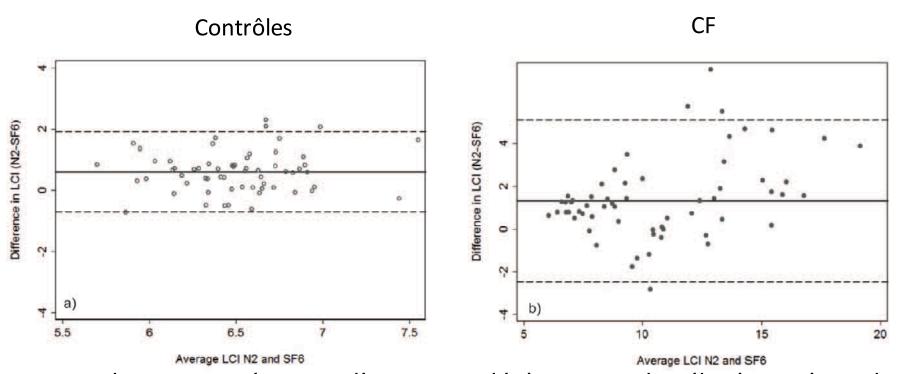
Sept 07 2012

First published online:

Feb 07 2013

Normes LCI jusqu'à 19 ans (SF6)

Sooky Lum et al. Eur Respir J 2013;41:1371-1377


Normes 6-19 ans SF6

 > 6 ans : pas de différence significative/l'âge, la taille, l'utilisation d'un embout buccal ou d'un masque

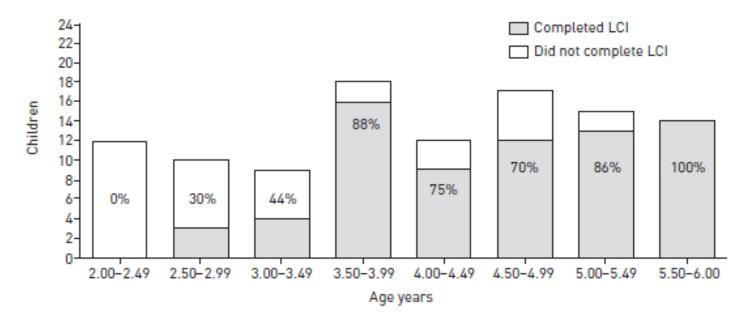
• 6.54 ± 0.51

LSN = moyenne prédite + 1,96 X DS = 7,56
 valable seulement dans cette tranche d'âge

LCI: différences N2/SF6

Les valeurs mesurées avec l'azote sont légèrement plus élevées qu'avec le SF6

- chez les contrôles (0,61)
- Et de façon plus marquée chez les CF (1,41)


Jensen R, PlosOne 2013

Cut off LSN LCI N2: 7.9

Singer F, Pediatr Pulmonol 2013

LCI Mesure non invasive possible

- chez les nourrissons
- chez les jeunes enfants
 - 70% de succès chez les préscolaires,
 - 33% à 2.5–3 ans et > 70% chez >3 ans)

LCI mesure reproductible

- Coefficient de variation (CoV) intramesures entre 3 et 13%
- CoV inter mesures (heures, mois) entre 2,6 et 9,2%

	Visit 1		Visit 1			Subjects With CF Completing 2 Visits	
Variable	Adult Subjects With CF (n = 67)	Adult HC Subjects (n = 30)	P Value	Child Subjects With CF (n = 43)	Child HC Subjects (n = 31)	P Value	Subjects With CF (n = 56) ^a
LCI intravisit CV %, mean (SD)	4.1 (2.4) ^d	4.5 (2.9) ^e	.57	6.3 (3.0) ^f	4.5 (2.3) ⁹	.01	4.3 (3.0)

Coefficient de répétabilité

TABLE 2 LCI Intravisit Repeatability Data for Adults With CF and Children With CF

Population	LCI First Washout, Mean (SD)	LCI Third Washout, Mean (SD)	Difference Third to First Washout, Mean (SD)	Coefficient of Repeatability
Adults with CF (n = 49)	9.8 (2.5)	10.0 (2.6)	0.2 (0.6)	1.2
Children with CF $(n = 37)$	7.9 (1.9)	8.0 (1.9)	0.1 (0.7)	1.3

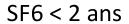
O'Neill, Chest, 2016; 150:1323-1332

La mesure de LCI peut différencier CF/contrôles

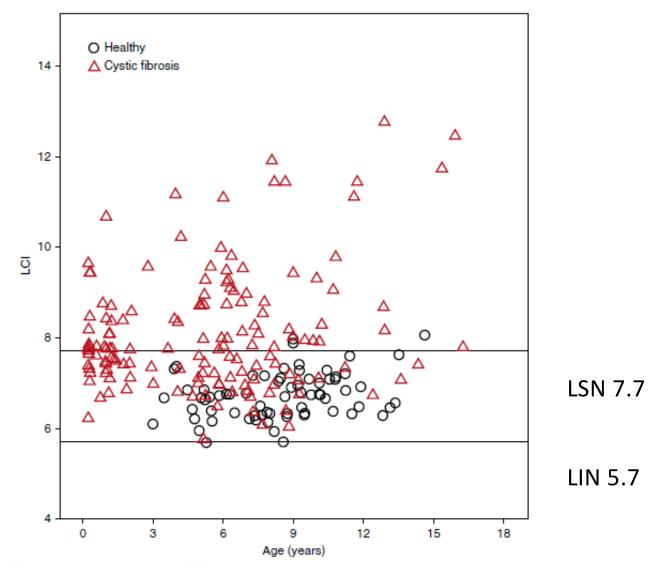
 23 études : 22 démontrent que la mesure de LCI permet de discriminer les sujets CF/contrôles

Journal of Cystic Fibrosis 13 (2014) 123-138

Review


Lung clearance index: Evidence for use in clinical trials in cystic fibrosis

L. Kent ^{a,b}, P. Reix ^c, J.A. Innes ^{d,c}, S. Zielen ^f, M. Le Bourgeois ^g, C. Braggion ^h, S. Lever ⁱ, H.G.M. Arets ^j, K. Brownlee ^k, J.M. Bradley ^{a,b}, K. Bayfield ^l, K. O'Neill ^m, D. Savi ⁿ, D. Bilton ^o, A. Lindblad ^p, J.C. Davies ^{l,o}, I. Sermet ^{g,q}, K. De Boeck ^{r,*}, On behalf of the European Cystic Fibrosis Society Clinical Trial Network (ECFS-CTN) Standardisation Committee


auteur	CF/non CF (n)	sujets	LCI
НОО	71, 54	Nourrissons	P=0,002
LUM	39, 21	Nourrissons	P< 0,001
BELESSIS	47, 25	Nourrissons et enfants	P< 0,001
BELESSIS	30,25	Nourrissons et enfants	P< 0,001
AURORA	48,45	préscolaires	P< 0,001

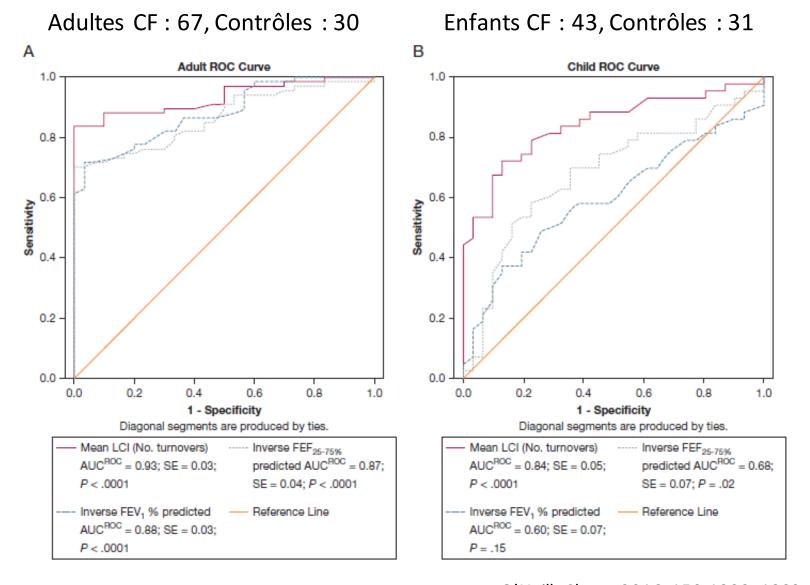
auteur	CF/non CF (n)	sujets	LCI
SINGER	73, 50	Enfants	P< 0,001
AMIN	17, 28	Enfants	P< 0,001
KEEN	45, 35	Enfants	P< 0,001
AURORA	22, 33	Enfants	P< 0,001
AURORA	30, 30	Enfants	P< 0,001
OWENS	56, 52	Enfants	P< 0,001
GUSTAFSSON	43, 28	Enfants	P< 0,001
PITMAN	5, 10	Enfants	NSP
FUCHS	68, 38	Enfants	P< 0,001
HORSLEY	18, 29	Enfants	P=0,002
BAKKER	15, 15	Enfants	P< 0,001
FUCHS	26, 22	Enfants (<18a)	P< 0,001
FUCHS	10, 8 SFM 31/	Enfants (<10a)	P=0,009

auteur	CF/non CF (n)	sujets	LCI
FUCHS	139, 102	Enfants et adultes	P< 0,001
GUSTAFFSON	18, 25	Adultes	P< 0,001
VERBANCK	25, 25	Adultes	P< 0,001
HORSLEY	22, 17	Adultes	P< 0,0001
HORSLEY	33, 48	Adultes	P< 0,001

N2 > 2 ans

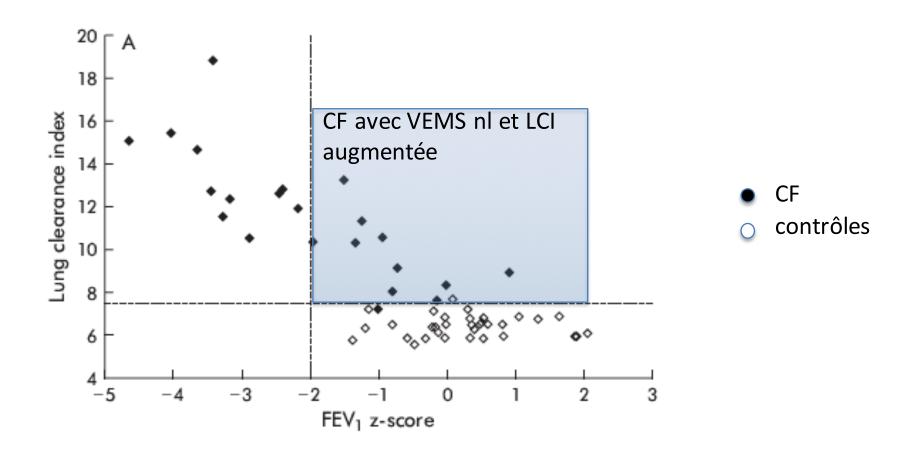
LCI/âge chez des enfants contrôles (cercles) et CF (triangles)

Pertinence de la mesure de LCI

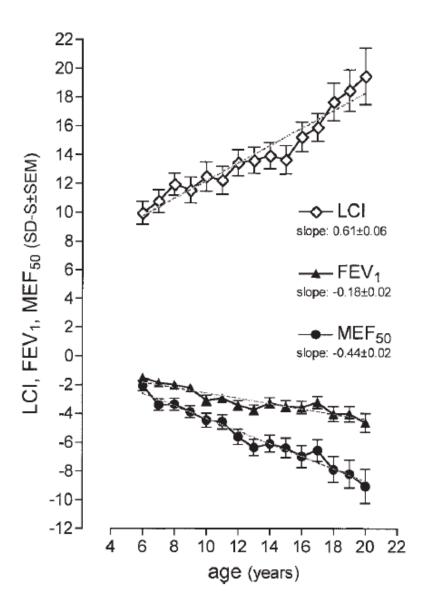

• /autres paramètres de fonction respiratoire

• / imagerie

/ exacerbations


• / mise en évidence d'effets thérapeutiques

LCI plus sensible que le VEMS, DEM 25-75


O'Neill, Chest, 2016; 150:1323-1332

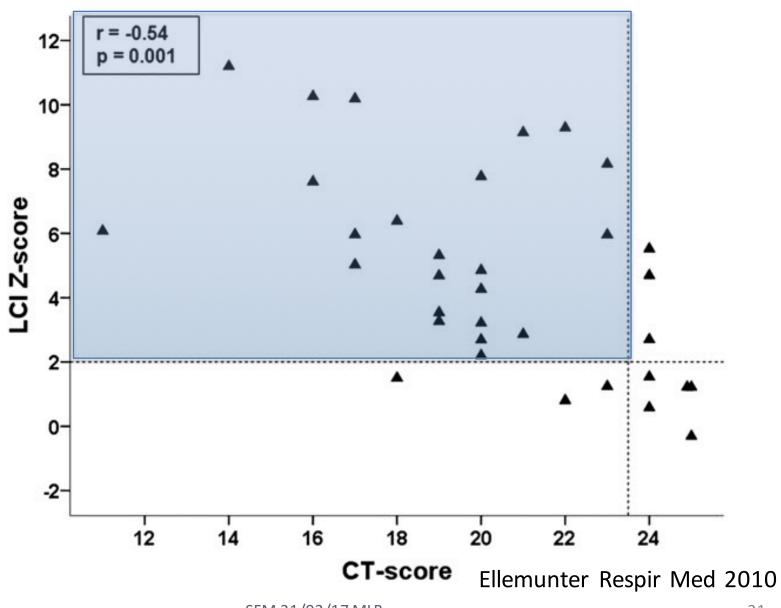
LCI plus sensible que le VEMS

Aurora, Thorax, 2007

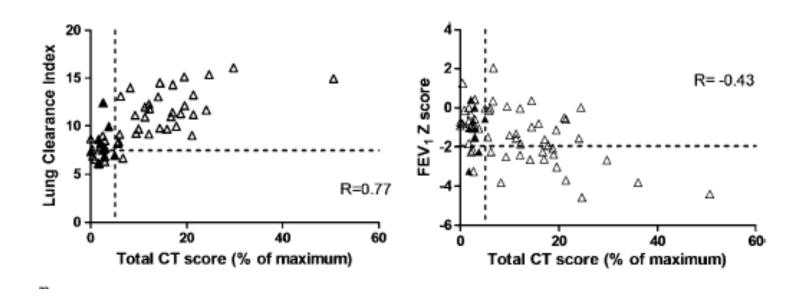
Augmentation de LCI précoce et corrélée à la progression de la maladie

Kraemer, AJRCCM, 2005

Pertinence de la mesure de LCI


• /autres paramètres de fonction respiratoire

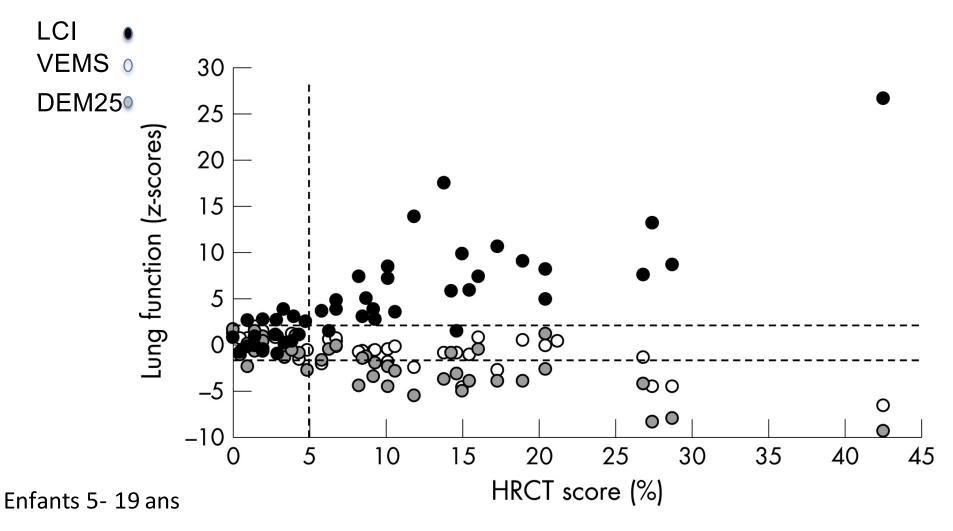
• / imagerie


/ exacerbations

• / mise en évidence d'effets thérapeutiques

LCI est corrélée à la TDM

LCI mieux corrélé à la TDM que le VEMS


Corrélation de LCI et VEMS avec le score total de TDM réalisée le même jour.

74% des enfants ont un résultat anormal pour LCI et TDM

34 % des enfants ont un résultat anormal de VEMS et TDM

Owens, Thorax, 2011

LCI est mieux corrélé à la TDM que le VEMS et le DEM 25

P M Gustafsson et al. Thorax 2008;63:129-134

Corrélation LCI / TDM

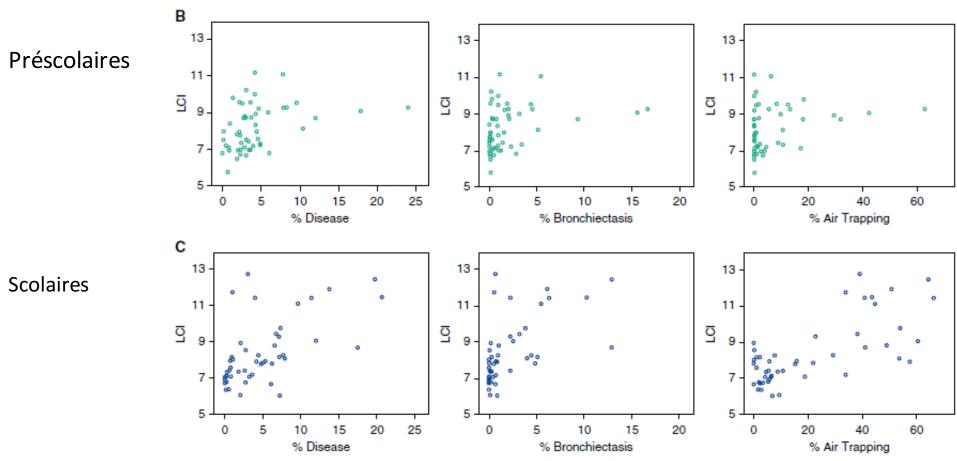
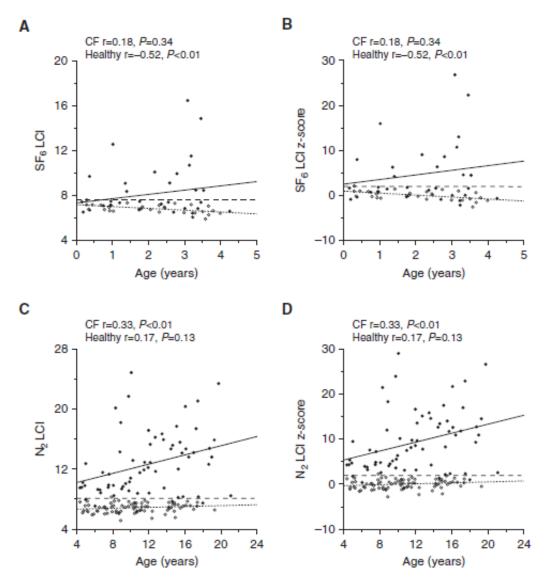



Figure 2. Scatterplots of lung clearance index (LCI) data plotted against percentage disease, bronchiectasis, and air trapping scores in infants (A, red circles), preschool children (B, green circles), and school-age children (C, blue circles) with cystic fibrosis.

LCI et IRM

Stahl, AJRCCM, 2017

LCI et IRM hyperpolarisée

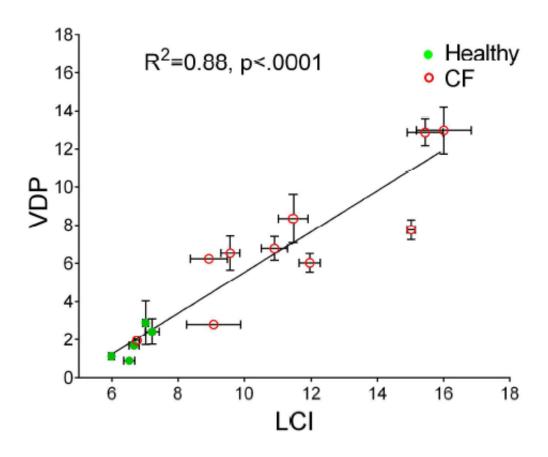
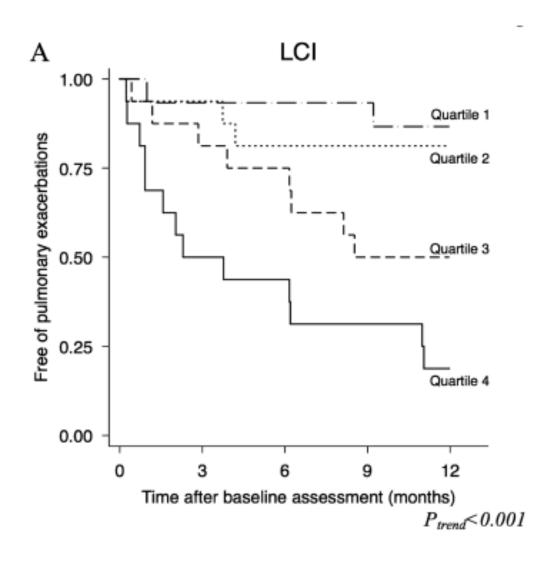


Figure 1: Ventilation defect percentage (VDP) measured with HP ¹²⁹Xe MRI plotted as a function of lung clearance index (LCI) for healthy participants (green solid circles) and CF patients (red open circles). The straight line shows the best-fit linear regression, and the error bars represent the standard deviations based on repeated measurements. Some participants had only one a single set of images with SNR>8 and hence lack error bars for VDP estimation.

Pertinence de la mesure de LCI


• /autres paramètres de fonction respiratoire

• / imagerie

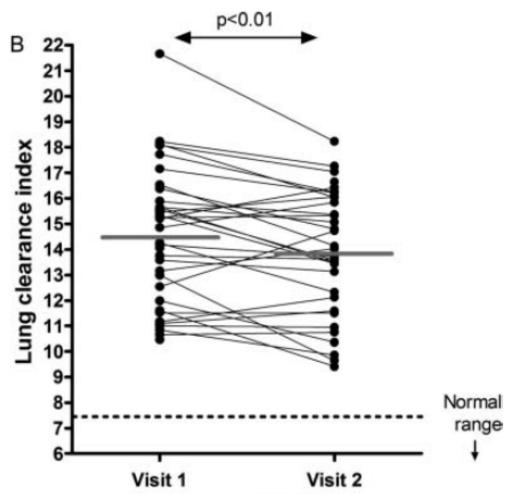
/ exacerbations

• / mise en évidence d'effets thérapeutiques

Corrélation entre LCI et exacerbation pulmonaire

Corrélation LCI et CFQ-Rresp

Pertinence de la mesure de LCI

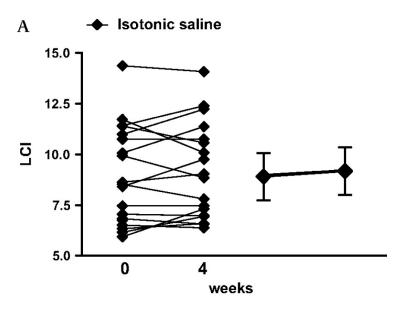

• /autres paramètres de fonction respiratoire

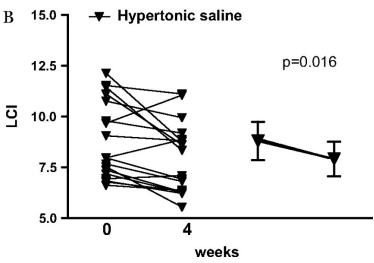
• / imagerie

/ exacerbations

• / mise en évidence d'effets thérapeutiques

LCI et Traitement antibiotique IV

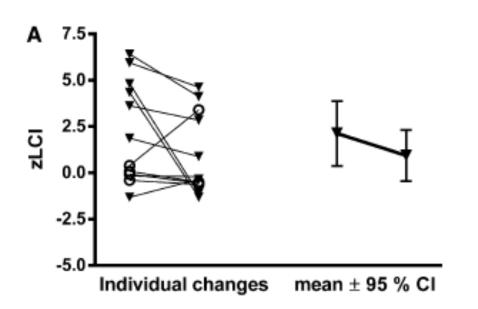



Adultes Amélioration 3%, 0,8 unités en moyenne

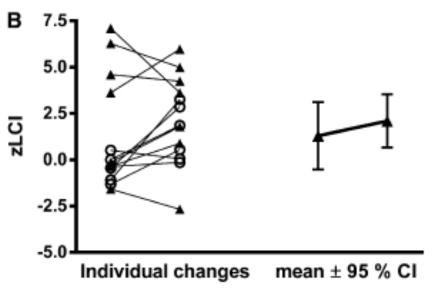
Horsley et al. Thorax 2013;68:532

LCI et SSH

Enfants

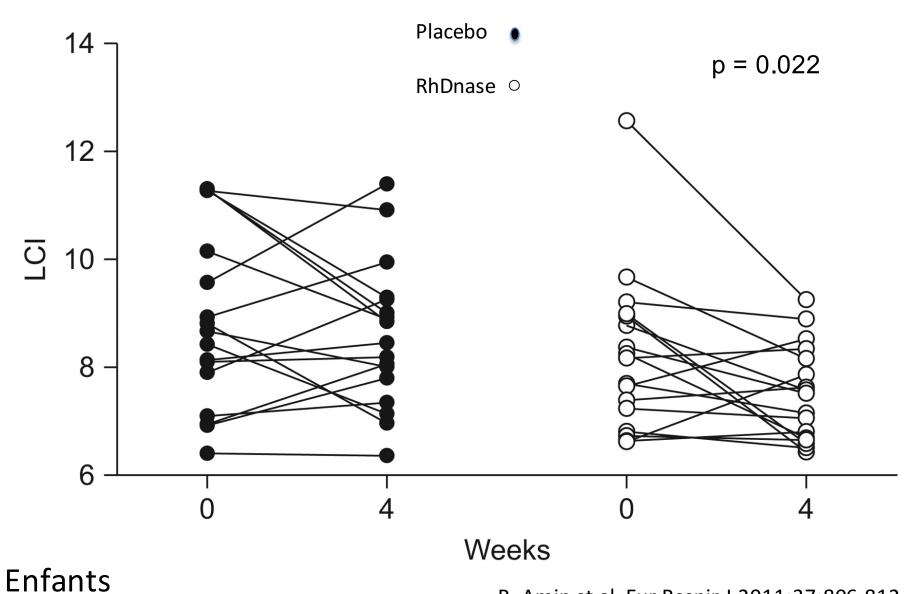


Reshma Amin et al. Thorax 2010;65:379-383



LCI et SSH

Nourrissons et enfants préscolaires



Sérum salé isotonique

Subbarao et al. AJRCCM 2013;188: 456-460

LCI et Rh Dnase

R. Amin et al. Eur Respir J 2011;37:806-812

LCI et Ivacaftor

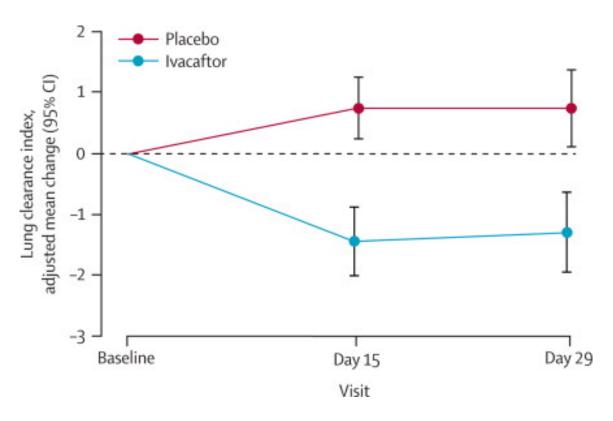


Figure 2. Mean change from baseline in lung clearance index in cystic fibrosis patients with a G551D-CFTR and preserved spirometry: a randomised controlled trial Enfants et adultes

Amélioration moyenne de 2,16 unités

Davies J, The Lancet Respiratory Medicine, 2013, 1, 630-8

ORKAMBI® 24 semaines en ouvert chez des enfants âgés de 6 à 11 ans

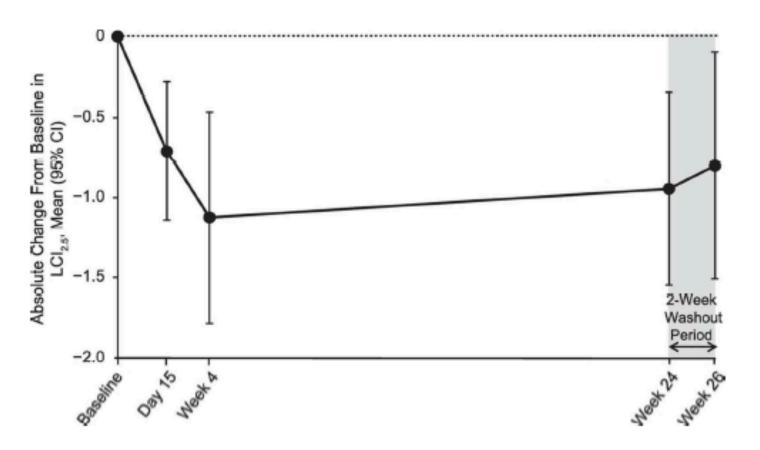


Figure 6. Absolute change from baseline in LCI_{2.5}.

Raw summary statistics (unadjusted for MMRM covariates) are shown for absolute change from baseline at study visits and Week 26 follow-up visit. Decrease in LCI_{2.5} indicates improvement.

Milla, AJRCCM; 2016

La mesure de LCI

- peut être réalisée chez les nourrissons et les enfants
- est indépendante de l'âge, de la taille, et du sexe
- est une mesure sensible de la détection précoce des anomalies des petites voies aériennes chez les enfants et adultes
- différencie les enfants atteints des contrôles

La mesure de LCI

- est corrélée
 - aux anomalies structurales de la TDM, de l'IRM (guide l'indication de l'imagerie)
 - aux exacerbations
- est surtout un bon marqueur d'évaluation thérapeutique notamment chez les malades ayant des mesures classiques de fonction respiratoire peu altérées

Merci à tous

Merci à tous

SFM 31/03/17 MLB