

Dr Juliette Nectoux Service de Génétique AP-HP.Centre - HUPC Cochin

Journées scientifiques de la mucoviscidose 01/04/2021

LE DIAGNOSTIC PRÉNATAL DES MALADIES MONOGÉNIQUES

- Les maladies monogéniques
- Près de 3000 gestes invasifs réalisés en 2017
 - → Risque de fausse-couche, d'accouchement prématuré ...
- Avancées de la médecine génomique et prénatale
 - → Options thérapeutiques *in utero* ou en période néonatale
- Nécessité de proposer un diagnostic prénatal précoce, fiable et sûr
 - → Permettre aux parents de prendre des décisions éclairées
 - → Adapter la prise en charge de la grossesse et de l'accouchement...

Résumé de l'activité de DPN en 2017*

	Nombre de laboratoires ayant eu une activité en 2017	Nombre d'examens ⁽¹⁾	Nombre de résultats positifs ⁽²⁾
Génétique			
- ADNIc : dépistage d'aneuploïdies	22	51 116	738
- ADNIc : détermination du rhésus fœtal	10	20 226	-
- Caryotypes	58	18 824	3 811
- ACPA	40	8-580.	720
- Maladies monogéniques	50	2 734	566
Biologie infectieuse			
- Virologie	28	2 988	182
- Toxoplasmose	24	959	73
Biochimie et marqueurs sériques			
- Marqueurs sériques maternels	84	637 547	26 832
- Défaut de fermeture du tube neural	8	293	166

* Rapport Annuel 2019 – Agence de Biomédecine

Nombre d'examens

- Nombre de femmes pour les examens de dépistages : marqueurs sériques maternels et ADNIcT21
- Nombre de prélèvements pour le toxoplasmose
- Nombre de fœtus pour les caryotypes, l'ACPA, les maladies monogéniques, la virologie et le défaut de fermeture du tube neural
- Nombre de détermination pour le rhésus fœtal à partir d'ADNIc

01/04/2021

Introduction Détection Qualitative Détection Quantitative Perspectives & Conclusion

LE DÉPISTAGE/ DIAGNOSTIC PRÉNATAL NON INVASIF

ADN FŒTAL CIRCULANT

THE LANCET

Early report

Presence of fetal DNA in maternal plasma and serum

Y M Dennis Lo, Noemi Corbetta, Paul F Chamberlain, Vlk Rai, Ian L Sargent, Christopher W G Redman, James S Wainscoat

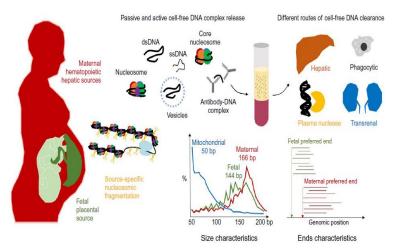
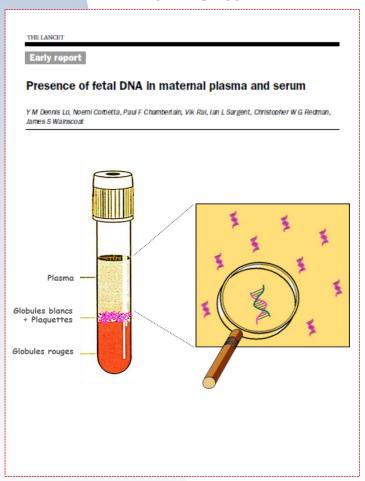


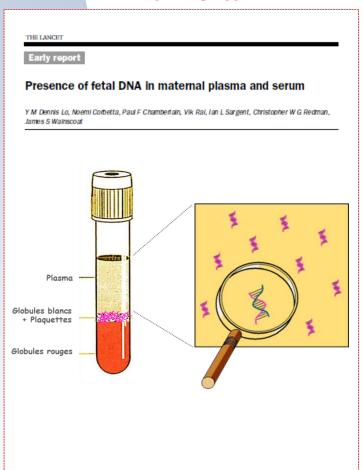
FIG. 27.1 Graphical abstract of cell-free fetal DNA biology.

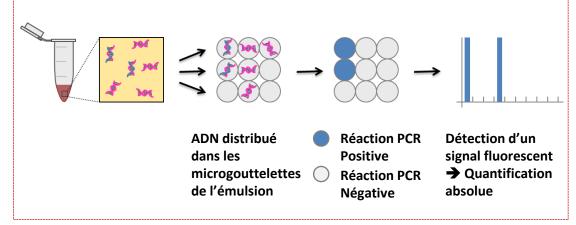
Lo et al, 1997; Tsang et Lo, 2019


NIPT versus NIPD

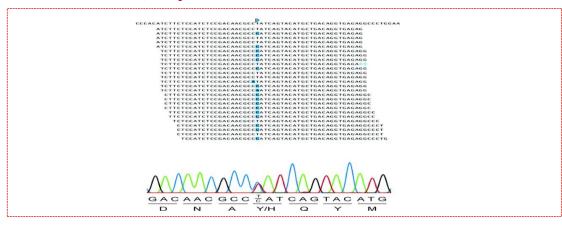
01/04/2021

DÉTECTION ET QUANTIFICATION DES ACIDES NUCLÉIQUES DE FAIBLE ABONDANCE


ADN FŒTAL CIRCULANT


- ✓ Faible quantité absolue
- ✓ Faible quantité relative

DÉTECTION ET QUANTIFICATION DES ACIDES NUCLÉIQUES DE FAIBLE ABONDANCE


ADN FŒTAL CIRCULANT

PCR DIGITALE - ddPCR

SÉQUENÇAGE NOUVELLE GÉNÉRATION - NGS

- Faible quantité absolue
- ✓ Faible quantité relative

Sensibilité, spécificité, précision

DIAGNOSTIC PRÉNATAL NON INVASIF APPLICATIONS

(1) DÉTECTION QUALITATIVE DE SÉQUENCES ABSENTES DU GÉNOME MATERNEL

Détermination du sexe fœtal

Hyperplasie congénitale des surrénales

Maladies liées à l'X

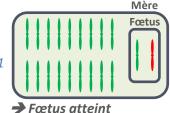
Génotypage RHD fœtal

Risque d'allo-immunisation fœto-maternelle

muté sain

Fœtus

Allèle Allèle


(2) DÉTECTION QUALITATIVE DE MUTATIONS ABSENTES DU GÉNOME MATERNEL

- Maladies associées à des mutations de novo
- Maladies dominantes héritées de père
- Diagnostic d'exclusion des maladies récessives

Achondroplasie

Neurofibromatose de type 1

Mucoviscidose

→ Fœtus non atteint

01/04/2021

DIAGNOSTIC PRÉNATAL NON INVASIF APPLICATIONS

(1) DÉTECTION QUALITATIVE DE SÉQUENCES ABSENTES DU GÉNOME MATERNEL

Détermination du sexe fœtal

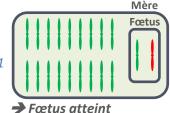
Hyperplasie congénitale des surrénales

Maladies liées à l'X

Génotypage RHD fœtal

Risque d'allo-immunisation fœto-maternelle

Allèle Allèle muté sain

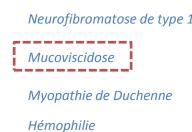

(2) DÉTECTION QUALITATIVE DE MUTATIONS ABSENTES DU GÉNOME MATERNEL

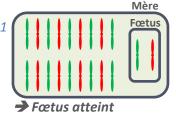
- Maladies associées à des mutations de novo
- Maladies dominantes héritées de père
- Diagnostic d'exclusion des maladies récessives

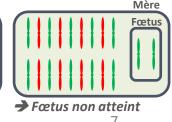
Achondroplasie

Neurofibromatose de type 1

Mucoviscidose

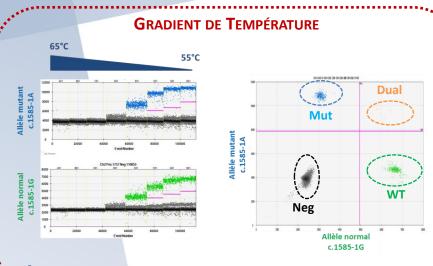


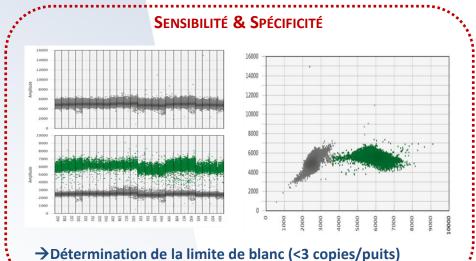



→ Fœtus non atteint

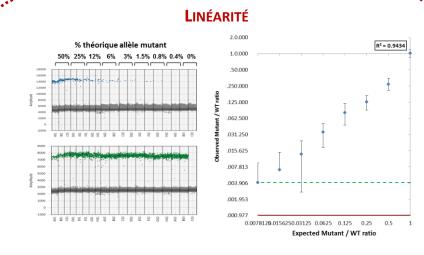
(3) DÉTECTION QUANTITATIVE DE MUTATIONS PRÉSENTES DANS LE GÉNOME MATERNEL

- Maladies dominantes héritées de la mère
- Maladies récessives
- Maladies liées à l'X

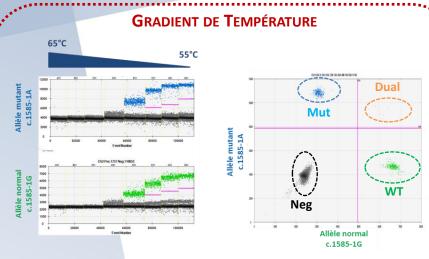




DÉTECTION QUALITATIVE DE VARIANTS ABSENTS DU GÉNOME MATERNEL


MISE AU POINT DES SONDES D'HYDROLYSE & CONTRÔLE QUALITÉ

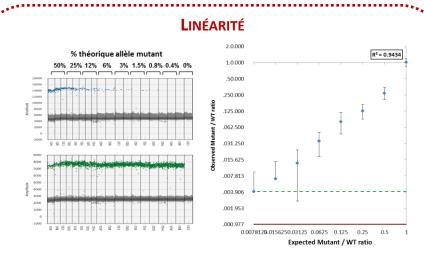
→ Identification des conditions d'amplification


→ Détermination de la limite de détection (>6 copies/puits)

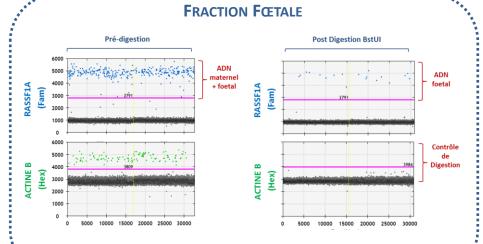
→ Détermination de la linéarité de l'essai (R²>0,8)

DÉTECTION QUALITATIVE DE VARIANTS ABSENTS DU GÉNOME MATERNEL

MISE AU POINT DES SONDES D'HYDROLYSE & CONTRÔLE QUALITÉ



→ Identification des conditions d'amplification

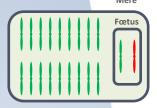

SENSIBILITÉ & SPÉCIFICITÉ Jacob Jac

→ Détermination de la limite de blanc (<3 copies/puits)

→ Détermination de la limite de détection (>6 copies/puits)

→ Détermination de la linéarité de l'essai (R²>0,8)

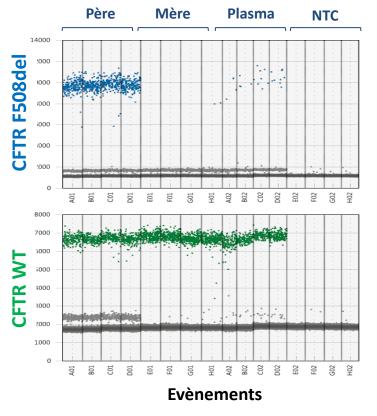
→Lors de chaque expérience, évaluation de la fraction fœtale

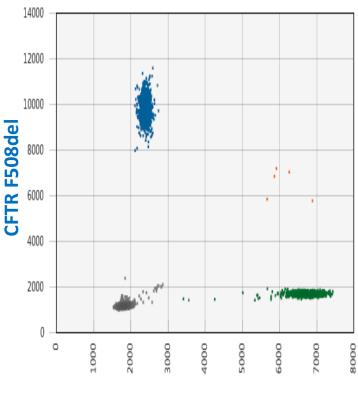

roduction Détection Qualitative Détection Quantitative Perspectives & Conclusion

DIAGNOSTIC D'EXCLUSION DES VARIANTS PATERNELS

MUCOVISCIDOSE

Famille 17DPXX

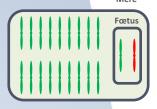

CFTR_{pat} p.Phe508del



→ Fœtus porteur

1D Amplitude

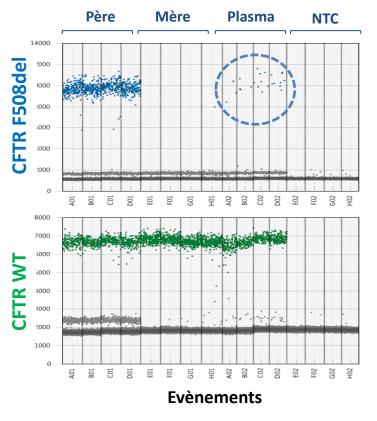
2D Amplitude

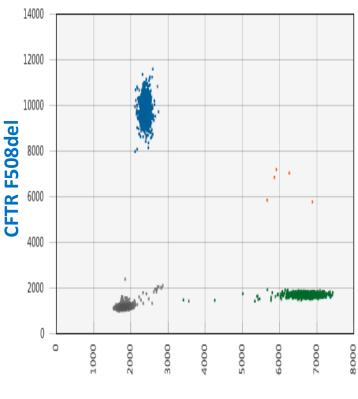

oduction Détection Qualitative Détection Quantitative Perspectives & Conclusion

DIAGNOSTIC D'EXCLUSION DES VARIANTS PATERNELS

MUCOVISCIDOSE

Famille 17DPXX


CFTR_{pat} p.Phe508del

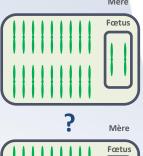


→ Fœtus porteur

1D Amplitude

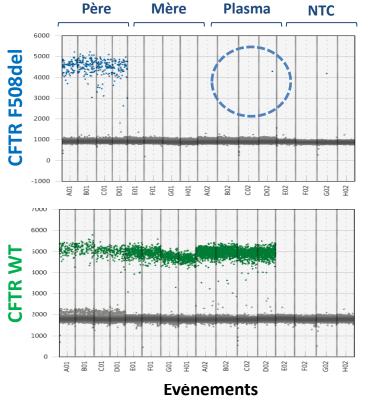
2D Amplitude

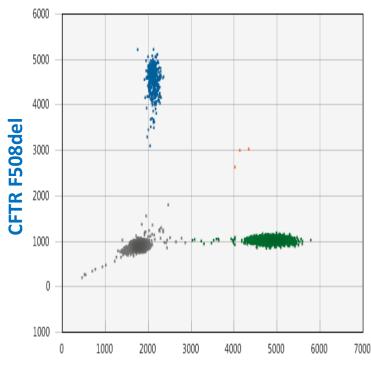
DIAGNOSTIC D'EXCLUSION DES VARIANTS PATERNELS


MUCOVISCIDOSE

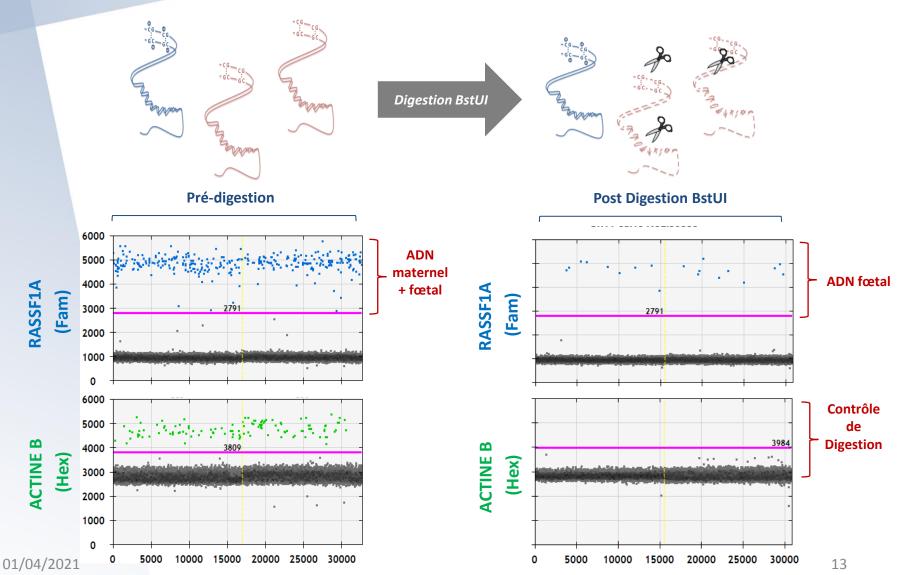
Famille 17DPXX CFTR_{pat} p.Phe508del

→ Fœtus porteur

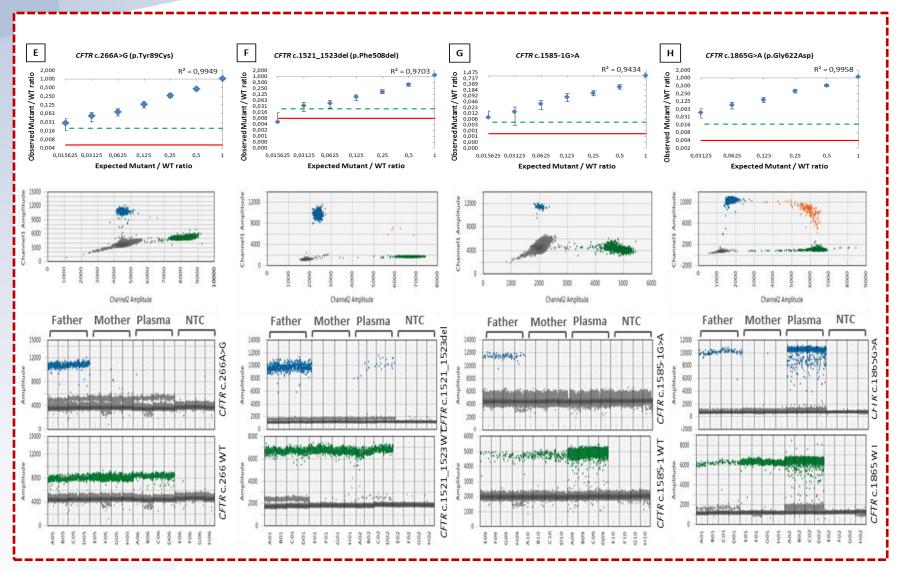

Famille 17DP83 CFTR_{pat} p.Phe508del

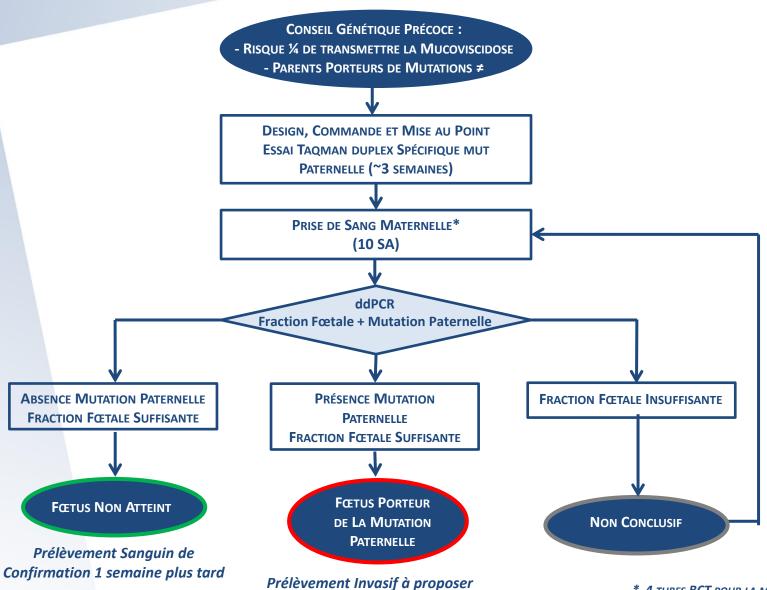


1D Amplitude


2D Amplitude

DÉTECTION DE L'ADN FŒTAL LIBRE PLASMATIQUE


ETUDE DU PROFIL DE MÉTHYLATION RASSF1A*


oduction Détection Qualitative Détection Quantitative Perspectives & Conclusion

DIAGNOSTIC D'EXCLUSION DES VARIANTS PATERNELS

MUCOVISCIDOSE

WORKFLOW

^{* 4} TUBES BCT POUR LA MÈRE + 1 TUBE EDTA POUR CHAQUE PARENT

troduction Détection Qualitative Détection Quantitative Perspectives & Conclusion

DIAGNOSTIC D'EXCLUSION DES VARIANTS PATERNELS RAPPORT D'ACTIVITÉ – GBM, HUPC COCHIN

	2017	2018	2019	2020	03/2021
Achondroplasie Dysplasies thanatophores Gène FGFR3, 5 variants ≠	30	19	32 5	38 3	7
Mucoviscidose Gène <i>CFTR</i> , 37 variants ≠	14	11	18	27	9
Neurofibromatose Type 1 Gène NF1, 26 variants ≠	3	5	2	4	3
Autres Gènes APC, CHAMP1, COL3A1, DHCR7, FBN1 etc, 36 variants ≠	-	1	2	16	12

Orhant et al, Prenat Diag, 2016 Nectoux, Mol Diag Ther, 2018 Orhant et al, Ann Biol Clin, 2016 Gruber et al, CCLM, 2018

Transcrit	Nomenclature cDNA	Nomenclature Prot
CFTR (NM_000492.3)	c.165-2A>G	
CFTR (NM_000492.3)	c.178G>T	p.Glu60*
CFTR (NM_000492.3)	c.254G>A	p.Gly85Glu
CFTR (NM_000492.3)	c.266A>G	p.Tyr89Cys
CFTR (NM_000492.3)	c.366T>A	p.Tyr122*
CFTR (NM_000492.3)	c.496A>T	p.Lys166*
CFTR (NM_000492.3)	c.658C>T	p.Gln220*
CFTR (NM_000492.3)	c.680T>G	p.Leu227Arg
CFTR (NM_000492.3)	c.965T>C	p.Val322Ala
CFTR (NM_000492.3)	c.1367T>C	p.Val456Ala
CFTR (NM_000492.3)	c.1397C>G	p.Ser466*
CFTR (NM_000492.3)	c.1519_1521del	p.Ile507del
CFTR (NM_000492.3)	c.1521_1523delCTT	p.Phe508del
CFTR (NM_000492.3)	c.1585-1G>A	
CFTR (NM_000492.3)	c.1624G>T	p.Gly542*
CFTR (NM_000492.3)	c.1652G>A	p.Gly551Asp
CFTR (NM_000492.3)	c.1657C>T	p.Arg553*
CFTR (NM_000492.3)	c.1753G>T	p.Glu585*
CFTR (NM_000492.3)	c.1865G>A	p.Gly622Asp
CFTR (NM_000492.3)	c.2051_2052delinsG	p.Lys684Serfs*38
CFTR (NM_000492.3)	c.2538G>A	p.Trp846*
CFTR (NM_000492.3)	c.2657+5G>A	
CFTR (NM_000492.3)	c.2988+1G>A	
CFTR (NM_000492.3)	c.3454G>C	p.Asp1152His
CFTR (NM_000492.3)	c.3484C>T	p.Arg1162*
CFTR (NM_000492.3)	c.3528del	p.Lys1177Serfs*15
CFTR (NM_000492.3)	c.3615delC	p.Ser1206Glnfs*5
CFTR (NM_000492.3)	c.3659delC	p.Thr1220Lysfs*8
CFTR (NM_000492.3)	c.3718-2477C>T	
CFTR (NM_000492.3)	c.3731G>A	p.Gly1244Glu
CFTR (NM_000492.3)	c.3773dupT	p.Leu1258Phefs*7
CFTR (NM_000492.3)	c.3857T>C	p.Phe1286Ser
CFTR (NM_000492.3)	c.3846G>A	p.Trp1282*
CFTR (NM_000492.3)	c.3889dup	p.Ser1297Phefs*5
CFTR (NM_000492.3)	c.3909C>G	p.Asn1303Lys
CFTR (NM_000492.3)	c.4242+1G>T	
CFTR (NM_000492.3)	c.4300_4301dup	p.Ser1435Glyfs*14

DIAGNOSTIC PRÉNATAL NON INVASIF APPLICATIONS

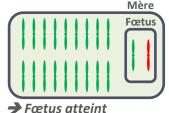
DÉTECTION QUALITATIVE DE SÉQUENCES ABSENTES DU GÉNOME MATERNEL

Détermination du sexe fœtal

Hyperplasie congénitale des surrénales

Maladies liées à l'X

Génotypage RHD fœtal Risque d'allo-immunisation fœto-maternelle

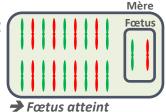

Allèle Allèle muté sain

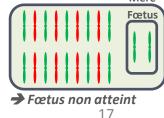
DÉTECTION QUALITATIVE DE MUTATIONS ABSENTES DU GÉNOME MATERNEL

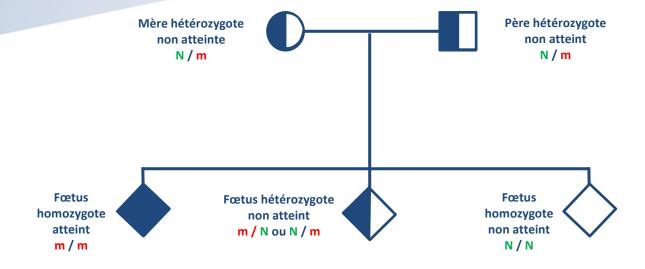
- Maladies associées à des mutations de novo
- Maladies dominantes héritées de père
- Diagnostic d'exclusion des maladies récessives

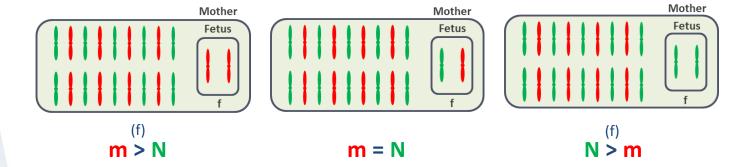
Achondroplasie

Neurofibromatose de type 1

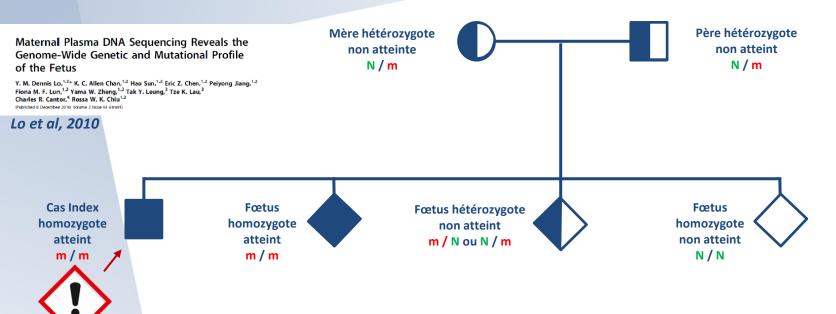

(3) DÉTECTION QUANTITATIVE DE MUTATIONS PRÉSENTES DANS LE GÉNOME MATERNEL

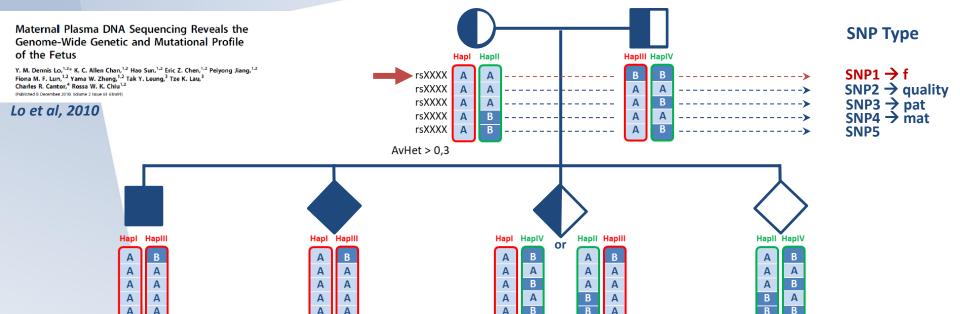

- Maladies dominantes héritées de la mère
- Maladies récessives
- Maladies liées à l'X



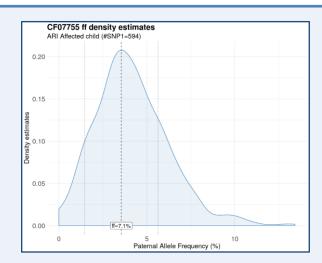

Myopathie de Duchenne

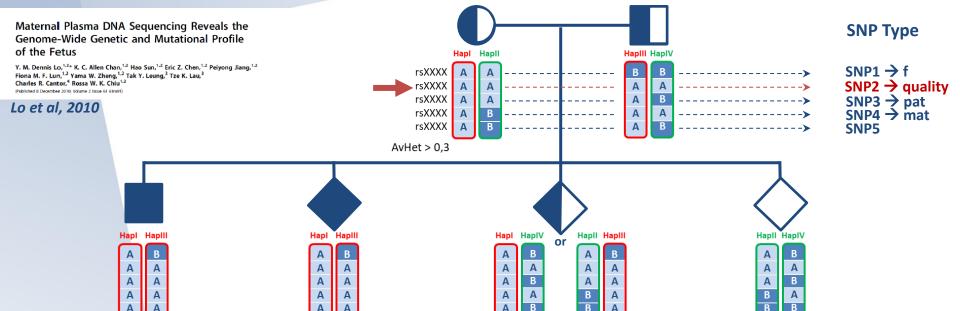
Hémophilie





01/04/2021


Mère hétérozygote Père hétérozygote Maternal Plasma DNA Sequencing Reveals the non atteinte non atteint Genome-Wide Genetic and Mutational Profile N/mN/mof the Fetus Hapili HapiV Hapl Hapli Y. M. Dennis Lo, 1,2* K. C. Allen Chan, 1,2 Hao Sun, 1,2 Eric Z. Chen, 1,2 Peiyong Jiang, 1,2 Fiona M. F. Lun, 1,2 Yama W. Zheng, 1,2 Tak Y. Leung, 3 Tze K. Lau, 3 Charles R. Cantor, 4 Rossa W. K. Chiu 1,2 rsXXXX Α rsXXXX Α rsXXXX Α В Α Α Lo et al, 2010 rsXXXX В Α rsXXXX AvHet > 0,3**Cas Index Fœtus** Fœtus Fœtus hétérozygote homozygote homozygote homozygote non atteint atteint atteint m/NouN/m non atteint HapIV Hapl Haplii Hapl Haplii Hapll HaplV Hapl Hapli Haplii m/mm/mN/N Α Α Α Α Α Α В В Α Α В В Α



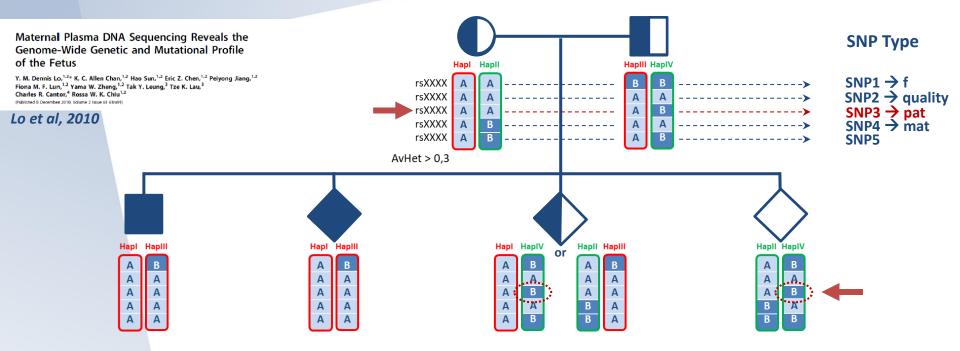
SNP1

PLASMA

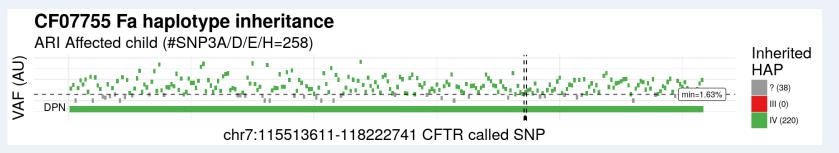
→ Estimation de la fraction fœtale



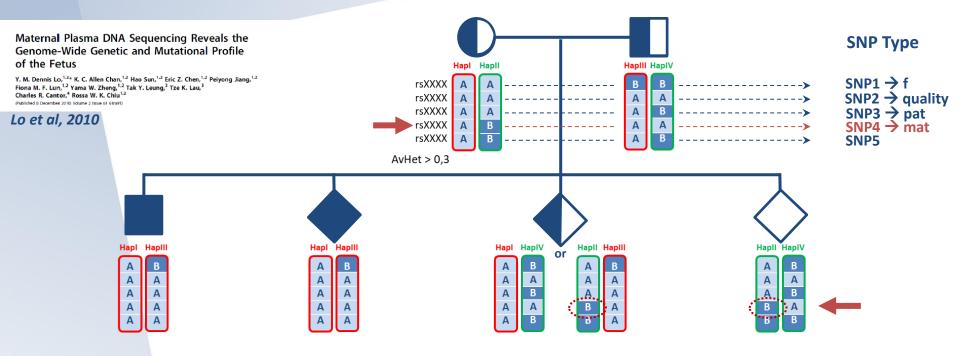
SNP2


PLASMA

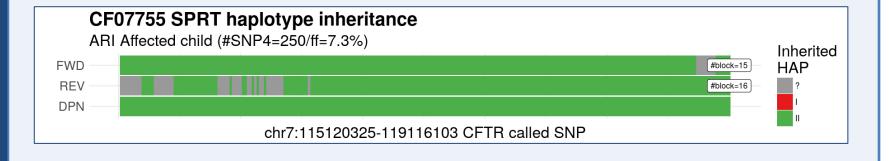
- → Estimation du bruit de fond de séquençage
- → Qualité (normalisation des résultats)


ntroduction Qualitative Detection Détection Quantitative Conclusion

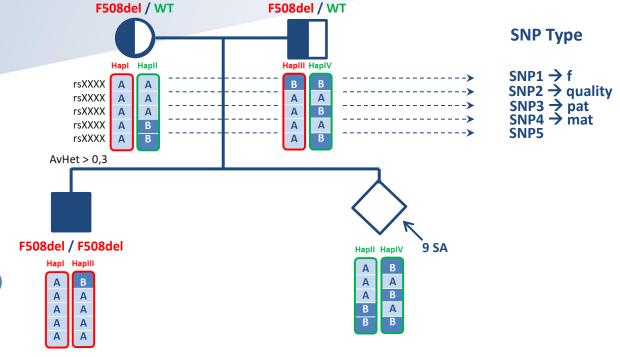
DÉTECTION QUANTITATIVE DE L'HAPLOTYPE MATERNEL


SNP3 → permet de savoir si le père a transmis son allèle « à risque » (Hap III) ou son allèle « non à risque » (HapIV)

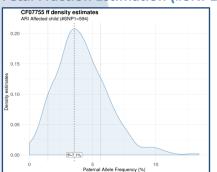
PLASMA

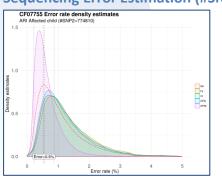

ntroduction Qualitative Detection Détection Quantitative Conclusion

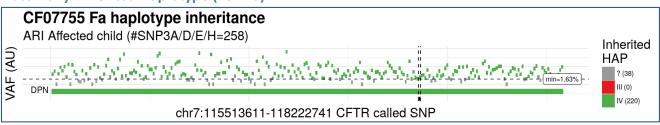
DÉTECTION QUANTITATIVE DE L'HAPLOTYPE MATERNEL

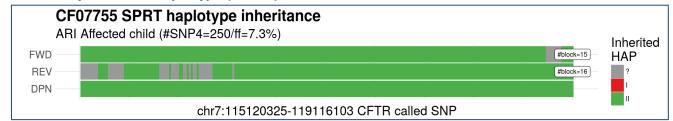


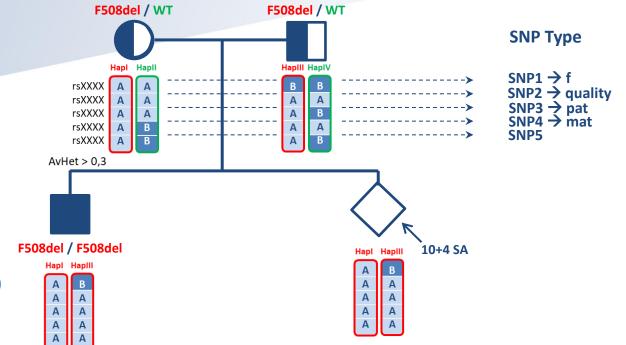
SNP4 → permet de savoir si la mère a transmis son allèle « à risque » (Hap I) ou son allèle « non à risque » (Hap II)

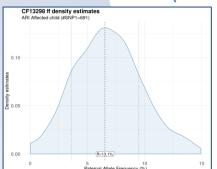

PLASMA

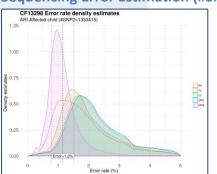

FAMILY CF07755

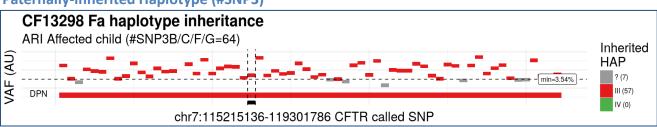

Fetal Fraction Estimation (#SNP1)


Sequencing Error Estimation (#SNP2)


Paternally-inherited Haplotype (#SNP3)


Maternally-inherited Haplotype (#SNP4)


FAMILY CF13298


Fetal Fraction Estimation (#SNP1)

Sequencing Error Estimation (#SNP2)

Paternally-inherited Haplotype (#SNP3)

Maternally-inherited Haplotype (#SNP4)

RÉSULTATS

Eamily	Amenorrhea	Proband	Fetal	Coverage Plasma				Blocks correctly	Conclusion
	weeks		Fraction	Cov	30X	Paternal Alleles	Maternal Alleles	classified	
CF10369	13	Considered affected child	14.2%	200	99.5%	429	289	95%	ОК
CF10393	12+1	Carrier first child	11.2%	179	99.3%	471	295	100%	ОК
CF10424	12+4	Considered affected child	11.5%	204	99.5%	315	408	100%	ОК
CF11117	11	Affected child	6.0%	190	99.2%	508	201	100%	ОК
CF07755	9	Affected first child	7.3%	209	99.5%	644	250	90%	ОК
CF09033	13	Unaffected first child	11.8%	203	99.5%	610	357	100%	ОК
CF09279	12+2	Considered affected child	9.7%	180	99.3%	283	416	100%	ОК
CF11600	12+4	Carrier first child	8.2%	269	99.7%	166	378	100%	ОК
CF10336	12+1	Unaffected first child	7.5%	198	99.5%	491	298	100%	ОК
CF09900	12+5	Unaffected first child	12.5%	166	99.2%	423	258	100%	ОК
CF07841	11+6	Affected first child	14.5%	132	98.7%	200	327	100%	ОК
CF11609_DPN1	13	First child carrier	10.2%	129	99.1%	394	247	97%	ОК
CF11609_DPN2	11+4	Affected first child	9.4%	141	98.3%	388	247	100%	ОК
CF10621	12+2	Affected first child	3.7%	160	98.8%	218	247	100%	Poor
CF10705_DPN1	18+4	Carrier first child	9.6%	110	98.5%	209	246	100%	ОК
CF10705_DPN2	12+1	Affected first child	6.9%	146	98.6%	212	249	100%	ОК
CF12282	14+4	Affected first child	15.1%	128	98.7%	243	218	100%	ОК
CF08820	12+2	Unaffected first child	15.1%	168	99.0%	381	265	100%	ОК
CF12618	7+6	Unaffected first child	7.7%	183	99.2%	195	170	100%	ОК
CF12544	25	Considered unaffected child	6.4%	177	99.3%	425	244	100%	ОК
CF13298	10+4	Affected first child	12.0%	167	99.3%	321	409	100%	ОК
CF11549_DPN1	10+2	Carrier first child	13.6%	177	99.3%	505	299	100%	ОК
CF11549_DPN2	12+1	Affected Child	12.3%	114	97.4%	514	311	100%	ОК
CF11639_DPN1	13	Affected first child	7.8%	191	99.5%	360	153	100%	ОК
CF11639_DPN2	11+4	Affected first child	12.9%	168	99.4%	360	145	100%	ОК

- 24/25 échantillons correctement classifiés « atteint » ou « non atteint » + 1 échec (faible fraction foetale)
- A poursuivre sur l'ensemble de notre cohorte CFTR, DMD (9/11), F8 (5/5), F9, NF1 (17/20)

TAKE HOME MESSAGE

- DIAGNOSTIC D'EXCLUSION DU VARIANT PATERNEL
 - ☑ Est proposé dans le cadre du soin, en diagnostic de routine
 - ☑ Dès 10 semaines d'aménorrhées
 - ☑ Pour les maladies dominantes héritées du père
 - Pour les maladies récessives si les parents sont porteurs de 2 variant différents
 - **☑** OK pour les mutations ponctuelles et les indels
 - **☒** Ne convient pas aux grandes délétions ou duplications ni aux expansions de triplets
- DIAGNOSTIC PRÉNATAL NON INVASIF DE TOUTES LES MALADIES MONOGÉNIQUES
 - **☑** Sera bientôt proposé dans le cadre du soin
 - **☑** Dès 10 semaines d'aménorrhées
 - ☑ Quel que soit le mode de transmission et le type de mutation des parents
 - **☑** Pas besoin de confirmation par prélèvement invasif
- 01/04/2021 Limite principale (pour le moment) : besoin de l'ADN d'un cas index

REMERCIEMENTS

Credits

Bioinformatics

Romain Daveau Alban Lermine Magali Champion Stéphanie Allassonnière

Laboratory technicians, Molecular Biologists, Geneticists

Lucie Orhant
Nicolas Vaucouleur
Nathalie Deburgrave
Gilles Tafuri
Aurélie Vasson
Isabelle Atlan

Thierry Bienvenu
Emmanuelle Girodon
Dominique Vidaud
France Leturcq
Michel Vidaud

Vassilis Tsatsaris François Goffinet Olivia Anselem

Laïla El Khattabi Jean Michel Dupont

HÔTEL-DIEU

Camille Verebi
Mathilde Pacault

Patients and their family

01/04/2021